Medineweb Forum/Huzur Adresi
Go Back   Medineweb Forum/Huzur Adresi > ..::.KPSS (İHL-İLAHİYAT).::. > KPSS (İ.H.L-İlahiyat) > Matematik

Konu Kimliği: Konu Sahibi Medineweb,Açılış Tarihi:  04 Ağustos 2012 (21:56), Konuya Son Cevap : 07 Mart 2014 (20:39). Konuya 35 Mesaj yazıldı

Beğeni Aldı1Kez Beğenildi
Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Değerlendirme
Alt 04 Ağustos 2012, 22:00   Mesaj No:11
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

BÖLME


A, B, C, K birer doğal sayı ve B ¹ 0 olmak üzere,
bölme işleminde,
  • <LI dir=ltr>A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir.

  • <LI dir=ltr>A = B . C + K dır.
    <LI dir=ltr>Kalan, bölenden küçüktür. (K < B)
    <LI dir=ltr>Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir.
  • K = 0 ise, A sayısı B ile tam bölünebiliyor denir.
B. BÖLÜNEBİLME KURALLARI


1. 2 İle Bölünebilme
Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.
Tek sayıların 2 ile bölümünden kalan 1 dir.
2. 3 İle Bölünebilme
Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.
Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.
3. 4 İle Bölünebilme
Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.
... abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.
l... abc sayısının 4 ile bölümünden kalan
c + 2 . b nin 4 ile bölümünden kalana eşittir.
4. 5 İle Bölünebilme
Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.
Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.
5. 7 İle Bölünebilme
(n + 1) basamaklı anan-1 ... a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,
k Î Z olmak üzere,
(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... = 7k
olmalıdır.
Ü Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, ... olan sayının 7 ile bölümünden kalan (a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... işleminin sonucunun 7 ile bölümünden kalana eşittir.
6. 8 İle Bölünebilme
Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.
3000, 3432, 65104 sayıları 8 ile tam bölünür.
Ü Birler basamağı c, onlar basamağı b, yüzler basamağı a, ... olan sayının 8 ile bölümünden kalan c + 2 . b + 4 . a toplamının 8 ile bölü-münden kalana eşittir.
7. 9 İle Bölünebilme
Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.
Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.
8. 10 İle Bölünebilme
Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.
9. 11 İle Bölünebilme
(n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için
(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... = 11 . k
ve k Î Z olmalıdır.
® (n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayı-sının 11 ile bölümünden kalan
(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.
  • <LI dir=ltr>2 ve 3 ile tam bölünen sayılar 6 ile de bölünür.
  • 3 ve 4 ile tam bölünen sayılar 12 ile de bölünür.

C. BÖLEN KALAN İLİŞKİSİ

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,
A nın C ile bölümünden kalan K1 ve
B nin C ile bölümünden kalan K2 olsun.

Buna göre,
  • <LI dir=ltr>A . B nin C ile bölümünden kalan K1 . K2 dir.

    <LI dir=ltr>A ± B nin C ile bölümünden kalan K1 ± K2 dir.
    <LI dir=ltr>D . A nın C ile bölümünden kalan D . K1 dir.
  • AE nin C ile bölümünden kalan K1E dir.
Burada kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

D. ÇARPANLAR İLE BÖLÜM

Bir A doğal sayısı B . C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla da bölünebilir. Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa A sayısı B . C ile tam bölünür.) her zaman doğru değildir.
  • <LI dir=ltr>144 sayısı 2 . 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 . 6 = 12 ile tam bölünemez.
E. BİR TAM SAYININ TAM BÖLENLERİ


Bir tam sayının, asal sayıların çarpımı biçiminde yazıl-masına bu sayının asal çarpanlarına ayrılması denir.
a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak üzere,


A = am . bn . ck olsun.
  • <LI dir=ltr>A yı tam bölen asal sayılar a, b, c dir.

    <LI dir=ltr>A sayısının pozitif tam bölenlerinin sayısı: (m + 1) . (n + 1) . (k + 1) dir.
    <LI dir=ltr>A sayısının pozitif tam bölenlerinin ters işaret-lileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı:
2 . (m + 1) . (n + 1) . (k + 1) dir.
  • <LI dir=ltr>A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı :
  • <LI dir=ltr>A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.

    <LI dir=ltr>A nın asal olmayan tam sayı bölenleri toplamı – (a + b + c) dir.
  • A sayısından küçük A ile aralarında asal olan sayıların sayısı:
  • A sayısını pozitif tam sayı bölenlerinin çarpımı:




Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:00   Mesaj No:12
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

MÜKEMMEL SAYI
Kendisi hariç bütün pozitif bölenlerinin toplamı kendisini veren sayılara "mükemmel sayı" denir.


Örnek: 28 mükemmel bir sayıdır.
28 = 22 .7
28 sayısının pozitif bölenleri: 1,2,4, 7, 14, 28
28'in bölenlerinden kendisi hariç diğerlerinin toplamı 1 + 2 + 4 + 7 + 14 = 28'dir.

alıntı
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:01   Mesaj No:13
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

ORTAK BÖLENLERİN EN BÜYÜĞÜ (OBEB)


En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların ortak bölenlerinin en büyüğü denir ve OBEB biçiminde gösterilir.

OBEB bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan büyük olmayan üslülerin çarpımı bu sayıların OBEB ini verir.
  • Eğer a
  • ¹ 0 veya b ¹ 0 ise OBEB tanımlı olup OBEB(a, b) ³ 1 dir.
  • a = b = 0 ise OBEB(a, b) tanımsızdır.
B. ORTAK KATLARIN EN KÜÇÜĞÜ (OKEK)


Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların ortak katlarının en küçüğü denir ve OKEK biçiminde gösterilir.

OKEK bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların OKEK ini verir.
  • a ve b tam sayılarından en az biri sıfır ise, OKEK(a, b) tanımsızdır.
a ve b pozitif tamsayı, a £ b ise,
  • OBEB(a, b)
  • £ a £ b £ OKEK(a, b)
  • a . b = OBEB(a, b) . OKEK(a, b)
  • a ile b aralarında asal ise, OBEB(a, b) = 1
Ü kesirleri ile tam bölünen en küçük pozitif kesir
kesirleri ile tam bölünebilen en küçük pozitif kesir
Ü a ve b pozitif tam sayı olmak üzere,

Ü İki pozitif tam sayının çarpımı, bu sayıların OBEB i ile OKEK inin çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların OBEB i ile OKEK inin çarpımına her zaman eşit değildir.
Ü A pozitif tam sayısı a . b ile tam bölünebiliyor ve OKEK(a, b) = x ise, A sayısı x ile tam bölünür.


alıntıdır.
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:01   Mesaj No:14
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

Taban Aritmetiği


Herhangİ bİr sayı sİstemİnden Onluk sayı sİstemİne geçiş:

Herhangi bir sayı sisteminden Onluk sayı sistemine geçebilmek için, basamak (hane) çözümlemesi yapılmalıdır. n, bir sayı sisteminin tabanını göstermek üzere
n >= 2 olacak şekilde bir doğal sayı ise, (abcde)n sayısı onluk sayı sistemine şöyle dönüştürülür.


Örnek: (218)9 = ( ? )10 taban dönüşümünü yapalım.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüşümünü yapalım.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152


Onluk sayı sİstemİnden Dİğer sayı sİstemlerİne geçİş:
Onluk tabandaki bir sayı diğer tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayı o sayıya bölünmelidir. Bölme işlemi, bölümdeki sayı taban sayısından küçük olana kadar yapılmalıdır. Yeni tabandaki sayı, en sondan başlanarak önce bölüm sonra da kalanlar sırasıyla yazılarak elde edilir.


Onluk taban dışındakİ bİr tabandan başka bİr tabana geçİş:
Verilen sayı önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayı, geçilmek istenen tabana dönüştürülür. Yani, n verilen taban ve m istenen taban ise, dönüşümün mantığı şu şekildedir:


Örnek: (1011)2 = ( ? )7 taban dönüşümünü yapalım.

Önce 2 tabanındaki 1011 sayısını Onluk tabana çevirelim.

8 4 2 1

( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1

= 8 + 0 + 2 + 1 = 11

Şimdi de Onluk tabandaki 11 sayısını 7 tabanına çevirelim. 11 sayısını, 7' ye böldüğümüzde, bölüm 1 ve kalan da 4 olacağından,

(11)10 = (14)7

sonucunu elde ederiz. Dolayısıyla, (1011)2 = (14)7 olarak bulunur.

Onluk taban dışındakİ tabanlardakİ sayıların tekliği veya çiftliği:

Sayının tabanı çift ise, sayının son rakamına (birler basamağındaki rakamına) bakılarak karar verilir. Şayet sayının son rakamı çift ise, sayı çifttir. Şayet sayının son rakamı tek ise, sayı tektir. Örneğin, (12345)8 = Tek, (1236)8 = Çift olur.

Sayının tabanı tek ise, sayının rakamları toplamına bakılarak karar verilir. Şayet sayının rakamları toplamı çift ise, sayı çifttir. Şayet sayının rakamları toplamı tek ise, sayı tektir. Örneğin, (234)7 = Tek, (2361)7 = Çift olur.

Onluk taban dışındakİ tabanlarda arİtmetİk İşlemler:

Toplama İşlemİ:

Örnek: (101)2 + (11)2 = ( ? )2

( 1 0 1 )2

+ ( 1 1 )2

__________

( 1 0 0 0 )2

İkilik tabanda 1 ile 1' in toplamı 10' dır. Dolayısıyla, ilgili basamağa 0 yazılır ve 1 sayısı bir önceki basamağa eklenir.

Örnek: (234)5 + (143)5 = ( ? )5

Birler basamağının toplamı, 4 + 3 = 7' dir. 7, 5 tabanında 12' dir. Dolayısıyla, birler basamağına 2 yazıp, beşler basamağına 1 ekleriz.

Beşler basamağının toplamı, 3 + 4 + 1 (birler basamağından eklenen) = 8 olur. 8, 5 tabanında 13' tür. Dolayısıyla, beşler basamağına 3 yazıp, yirmibeşler basamağına 1 ekleriz.

Yirmibeşler basamağının toplamı, 2 + 1 + 1 (beşler basamağından eklenen) = 4 olarak bulunur.

Sonuç olarak, toplam (432)5 olur.

Çıkarma İşlemİ:

Örnek: (132)5 - (23)5 = ( ? )5

Birler basamağının farkı, 2' den 3 çıkartılamayacağı için, beşler basamağından 1 alınmalıdır (yani, 5 alınmalıdır). Bu durumda, 7' den 3 çıkartılarak 4 bulunur.

Beşler basamağından 1 alındığı için, burada 2 kalmıştır. Böylece, 2' den 2 çıkartıldığında 0 kalır.

Yirmibeşler basamağındaki 1 sayısından birşey çıkartılmadığı için aynen alınır.

Sonuç olarak, fark (104)5 bulunur.

Çarpma İşlemİ:

Örnek: (144)5 x (23)5 = ( ? )5

(144)5 x (23)5 = (144)5 x (3)5 + (144)5 x (2)5 = ( 1 0 4 2 )5

+ ( 3 4 3 )5

= ( 1 0 0 2 2 )5

Çarpma işleminin mantığı, onluk tabandaki çarpma işlemine çok benzer. 5 tabanındaki 144 ile 3' ün çarpımı şöyle yapılır:

Birler basamağı: 4 ile 3' ün çarpımı 12' dir. Birler basamağına 2 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için, beşler basamağına 2 aktarılır.

Beşler basamağı: 4 ile 3' ün çarpımı 12' dir ve buna birler basamağından aktarılan 2 sayısı da ilave edilerek 14 elde edilir. Beşler basamağına 4 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için, yirmibeşler basamağına 2 aktarılır.

Yirmibeşler basamağı: 1 ile 3' ün çarpımı 3' tür ve beşler basamağından aktarılan 2 sayısı da ilave edilerek 5 elde edilir. 5 tabanında 5, 10 olduğu için yirmibeşler basamağına 0 ve yüzyirmibeşler basamağına da 1 yazılır.

Örnek: ( 25m0 )6 = ( 642 )10 ise, m = ?

216 36 6 1

( 2 5 m 0 )6 = ( 642 )10

216.2 + 36.5 + 6.m + 1.0 = 642

432 + 180 + 6m + 0 = 642

612 + 6m = 642

6m = 642 - 612

6m = 30

m = 5

Örnek: ( 102 )m + ( 145 )m = ( 251 )m ise, m = ?

m2 m 1 m2 m 1 m2 m 1

( 1 0 2 )m + ( 1 4 5 )m = ( 2 5 1 )m

( m2.1 + m.0 + 1.2 ) + ( m2.1 + m.4 + 1.5 ) = m2.2 + m.5 + 1.1

m2 + 2 + m2 + 4m + 5 = 2m2 + 5m +1

2m2 + 4m + 7 = 2m2 + 5m + 1

4m +7 = 5m + 1

7 - 1 = 5m - 4m

6 = m

Örnek: ( 124 )5 + ( 103 )5 = ( m2n )7 ise, m = ?

( 124 )5 + ( 103 )5 = ( 232 )5 bulunur. ( 232 )5 sayısını onluk tabana çevirelim.

25 5 1

( 2 3 2 )5 = 25.2 + 5.3 + 1.2 = 50 + 15 + 2 = 67 olur.

Şimdi de onluk tabandaki 67 sayısını 7' lik tabana çevirelim.

67 : 7 = 7.9 + 4 olur. Bölüm 9 ve kalan 4 dir.

9 : 7 = 7.1 + 2 olur. Kalan 2 ve bölüm 1 olur. En sondaki bölümle kalanlar tersten yazılarak, ( 67 )10 = ( 124 )7 bulunur.

Buradan,

( m2n )7 = ( 124)7
olduğundan, m = 1 bulunur.

TABAN ARITMETIGI
Herhangi bir sayi sisteminden Onluk sayi sIstemIne geçiş:
Herhangi bir sayi sisteminden Onluk sayi sistemine geçebilmek için, basamak (hane) çözümlemesi yapilmalidir. n, bir sayi sisteminin tabanini göstermek üzere
n >= 2 olacak sekilde bir dogal sayi ise, (abcde)n sayisi onluk sayi sistemine söyle önüstürülür:
Dogaldir ki, sayi sistemlerinin özelligine göre, sayiyi olusturan rakamlar daima tabandan küçük olmalidir.
Örnek: (1234)5 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (10110)2 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (218)9 = ( ? )10 taban dönüsümünü yapalim.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüsümünü yapalim.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152
Onluk sayi sIstemInden DIger sayi sIstemlerIne geçIs:
Onluk tabandaki bir sayi diger tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayi o sayiya bölünmelidir. Bölme islemi, bölümdeki sayi taban sayisindan küçük olana kadar yapilmalidir. Yeni tabandaki sayi, en sondan baslanarak önce bölüm sonra da kalanlar sirasiyla yazilarak elde edilir.
Örnek: (194)10 = ( ? )5 taban dönüsümünü yapalim.

Örnek: (179)10 = ( ? )9 taban dönüsümünü yapalim.

Onluk taban disindakI bIr tabandan baska bIr tabana geçIs:
Verilen sayi önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayi, geçilmek istenen tabana dönüstürülür. Yani, n verilen taban ve m istenen taban ise, dönüsümün mantigi su sekildedir:

Örnek: (132)5 = ( ? )8 taban dönüsümünü yapalim.
Önce 5 tabanindaki 132 sayisini Onluk tabana çevirelim.
25 5 1
( 1 3 2 )5 = 52.1 + 51.3 + 50.2 = 25.1 + 5.3 + 1.2 =25 + 15 + 2 = 42
Simdi de Onluk tabandaki 42 sayisini 8 tabanina çevirelim.

Böylece, (132)5 = (52)8 olarak bulunur.
Örnek: (1011)2 = ( ? )7 taban dönüsümünü yapalim.
Önce 2 tabanindaki 1011 sayisini Onluk tabana çevirelim.
8 4 2 1
( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1
= 8 + 0 + 2 + 1 = 11
Simdi de Onluk tabandaki 11 sayisini 7 tabanina çevirelim. 11 sayisini, 7 ye böldügümüzde, bölüm 1 ve kalan da 4 olacagindan,
(11)10 = (14)7
sonucunu elde ederiz. Dolayisiyla, (1011)2 = (14)7 olarak bulunur.
Onluk taban disindakI tabanlardakI sayilarin tekligi veya çiftligi:
Sayinin tabani çift ise, sayinin son rakamina (birler basamagindaki rakamina) bakilarak karar verilir. Sayet sayinin son rakami çift ise, sayi çifttir. Sayet sayinin son rakami tek ise, sayi tektir. Örnegin, (12345)8 = Tek, (1236)8 = Çift olur.
Sayinin tabani tek ise, sayinin rakamlari toplamina bakilarak karar verilir. Sayet sayinin rakamlari toplami çift ise, sayi çifttir. Sayet sayinin rakamlari toplami tek ise, sayi tektir. Örnegin, (234)7 = Tek, (2361)7 = Çift olur.
Onluk taban disindakI tabanlarda arItmetIk Islemler:
Toplama IslemI:
Örnek: (101)2 + (11)2 = ( ? )2
( 1 0 1 )2
+ ( 1 1 )2


alıntıdır.
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:01   Mesaj No:15
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

kesir çeşitleri


1. Payı paydasından küçük olan kesirlere basit kesir denir.

II. Payı paydasından büyük veya eşit olan kesirlere bileşik kesir denir.


III. Bir sayma sayısı ile birlikte gösterilen kesirlere tam sayılı kesir denir.

alıntıd
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:02   Mesaj No:16
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

kesirleri birbirine çevirme

Bir bütünün eş parçalarından bir kısmına kesir denir. Bu kesri gösteren sayıya da kesir sayısı denir. Kesir sayısı yerine kesir de kullanılır. Sayı sözcüğü kullanılmadığı zaman da bunun kesir sayısı olduğu anlaşılır.

Kesir, biri üstte, öteki altta, araları bir çizgiyle ayrılan iki doğal sayıyla yazılır. Üstteki sayıya pay, alttakine payda, ve bunları ayıran çizgiye de kesir çizgisi ya da bölü çizgisi denir.


Payda, bütünün ya da çokluğun kaç eş parçaya ayrıldığını, pay ise bu eş parçalardan kaç tanesinin alındığını gösterir.

Bütün ya da çokluk 0′dan (sıfır) çok sayıda parçaya ayrılacağından, kesirlerde paydada 0 (sıfır) bulunmaz.

Kesirler, ya paylardan ya da paydalardan başlayarak okunur.

kesri, “a bölü b” veya “b de a” diye okunur.

Payı bir olan kesre, kesrin birimi denir.

Bir kesrin pay ve paydasındaki sayılar eşit ise, o kesrin değeri 1′dir.

Bir bütünün 2 eş parçasından birine yarım, dört eş parçasından birine çeyrek denir.

5 eş parçaya bölünmüş bir bütünden, 2 parça seçilip alınırsa, bu kesir olarak gösterilir.

Örnek
Çocuk, bir pastanın ’sini yemişse geriye ne kadar pasta kaldı?

Pastanın bütünü 1′dir. Bu yüzden yediği miktar, bütünden çıkartılırsa, geriye kalan pasta miktarı bulunur. Yenilen kısmı gösteren kesrin paydası 7 ve bütün 1 olduğundan, 1 yerine işlemi kolaylaştırmak adına kullanılır. Buna göre;
bulunur. Geriye pastanın ’si kalmıştır.
Kesirler sayı doğrusunda gösterilebilir. Sayı doğrusunda, iki tam sayı arası bir bütün olarak alınır.

Kesirlerin Birbirine Çevrilmesi:
Bileşik kesirle tam sayılı kesirler, birbirine çevrilebilir.

Örnek 1
bileşik kesrini tam sayılı kesre çevirmek için pay, paydaya bölünür. Bölme işleminde bölünen 7, bölen 5, bölüm 1 ve kalan 2 olur. bileşik kesrinin tam sayılı kesir karşılığı,olarak bulunur.

Bir tam sayılı kesri bileşik kesri çevirmek için önce tam kısımla payda çarpılır. Çıkan sonuç pay ile toplanır ve elde edilecek olan bileşik kesrin payına yazılır. Bileşik kesrin paydası, tam sayılı kesrin paydasıyla aynıdır.

Örnek 2
tam sayılı kesri bileşik kesre çevirirken yukarıda anlatılan yöntem uygulanır.

1 x 5 + 2 = 7

bulunur. Bu sayı bileşik kesrin payı olur. Payda değişmez.
= olur.

Kesirlerde Bölme İşlemi:
Birinci kesir olduğu gibi kalır. İkinci kesir ters çevrilip payı paydaya, paydası paya yazılır ve çarpılır.

Kesirlerde Çarpma İşlemi:
Kesirlerin payları çarpılıp çarpımın payına, paydaları çarpılıp çarpımın paydasına yazılır.

Örnek 1
Bir kesrin 0 ile çarpımı sıfırdır.

Örnek 2

Bir kesrin pay ve paydası aynı sayma sayısıyla çarpılırsa, kesrin değeri değişmez. Kesir bu sayıyla genişletilmiş olur. Bir kesirle, genişletilmiş kesir birbirine denktir.

Kesirlerde Çıkarma İşlemi:
İşlem yapılacak kesirlerde bütünler aynı sayıda eş parçalara bölünmüş olmalıdır. Yani paydaları eşit olmalıdır. Farklı sayılarda bölünmüşseler, paydalar eşitlenir. Paydalar, en küçük ortak kata eşitlenir.

Çıkarma işleminde paylar çıkarılır ve sonuç pay kısmına yazılır. Eşit payda işlem sonucunun paydasına yazılır.

Kesirlerde Toplama İşlemi:
İşlem yapılacak kesirlerde bütünler aynı sayıda eş parçalara bölünmüş olmalıdır. Yani paydaları eşit olmalıdır. Farklı sayılarda bölünmüşseler, paydalar eşitlenir. Paydalar, en küçük ortak kata eşitlenir.

Toplama işleminde paylar toplanır ve toplam, toplam kesrinin payı olur.

Kesirleri Ondalık Kesir Biçiminde yazma:
Kesrin payının, paydasına bölümüle elde edilen değer, kesrin ondalık kesir cinsinden karşılığını verir.

basit kesrinin ondalık kesir şeklindeki yazımı 0,25′dir. Bu değeri bulmak için 1, 4′e bölünmüştür.

bileşik kesrinin ondalık kesir şeklindeki yazımı 2, değeridir (2,33333…).

Kesirlerin Karşılaştırılması:
Kesir sayıları arasında sıralama yapılabilir.

Kesirlerin paydaları eşitse; paylarına göre sıralama yapılır.

Verilen kesirlerin paydaları eşitse payı büyük olan kesir daha büyüktür.

Kesirlerin payları eşitse; paydalarına göre sıralama yapılır. Verilen kesirlerin payları eşitse paydası büyük olan daha küçüktür.

Payları ve paydaları eşit değilse; pay ya da paydalar eşitlendikten sonra sıralama yapılır.

alıntıdır.
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:02   Mesaj No:17
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

rasyonel sayılarda sıralama


Pozitif kesirlerde sıralama yapılırken aşağıdaki yollardan biri kullanılır.
I. Yol:
Paydaları eşit olan (eşitlenen) kesirlerden payı en büyük olan diğerlerinden daha büyüktür.
II. Yol:
Payları eşit olan (eşitlenen) kesirlerden paydası en küçük olan diğerlerinden daha büyüktür.
III. Yol:
Payı ile paydası arasındaki farkı eşit olan, basit kesirlerde, payı en büyük olan diğerlerinden daha büyüktür.

Payı ile paydası arasındaki farkı eşit olan, bileşik kesirlerde, payı en büyük olan diğerlerinden daha küçüktür.
Yukarıda verilen yöntemler pozitif kesirlerde geçerlidir. Negatif kesirlerde ise durum tersinedir.
F. İKİ RASYONEL SAYI ARASINDAKİ SAYILAR

arasında sayılamayacak çoklukta rasyonel sayı vardır. Bunlardan bazılarını bulmak için b ile d nin OKEK i bulunur. Verilen kesirlerin paydaları bulunan OKEK inde eşitlenir. İstenen koşuldaki sayıyı bulmak için kesirler genişletilebilir.
Üx, kesirlerinin ortasındaki bir sayı ise,
alıntıdır.
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:03   Mesaj No:18
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

Konu:Rasyonel sayılarla işlemler – Rasyonel Sayılarla Toplama ve Çıkarma İşlemleri

Tam sayılarda toplama ve çıkarma işlemini bilen bir öğrenci için rasyonel sayılarda toplama ve çıkarma işlemi çok basit bir konu olacaktır.

iki rasyonel sayı verildiğinde geçen sene öğrendiğimiz kesirlerde toplama ve çıakrma işleminin kurallarını uygulayacağız.
Örneğin;

4-2=2

5+3=8

derken birden karşımıza negatif tam sayıların da olduğu işlemler çıktı ve

-4-2=-6

-5+3=-2 gibi sonuçları gördük.
Kesirlerde de paydaları eşitledik, payları topladık veya çıkardık, paydalar ise sabit kaldı.
Şimdi bunların ikisini birarada kullanacağız.

yukarıda iki rasyonel sayı ile ilgili işlemler verilmiş.
aradaki işlem toplama işlemi ve paydaların aynı olması gerektiği için eşitledik paydayı.
Payda eşitlendikten sonra payda ile işimiz bitti ve paya bakıyoruz.
Artık tam sayılarda toplama ve çıkarma işleminin özelliğini kullanabiliri.
-3+2 nin sonucunun -1 e eşit olduğunu biliyoruz ve pay kısmına -1 yazıyoruz.
Sonuç -1/6 olarak bulundu.
Aradaki işlem toplama da olsa, çıkarma da olsa aynı mantığı kullanıyoruz.
Soru: Rasyonel sayılar tam sayılı kesir şeklindeyse veya ondalık sayı şeklineyse nasıl sonuca gideriz?
Cevap: Tam sayılı kesirleri bileşik kesre çevirirsek hiçbir zaman hata yapmayız.
Aynı şekilde, sayılardan biri ondalık sayı, diğeri rasyonel sayı ise; ya ikisini de rasyonel sayıya çevirin, ya da ikisini de ondalık sayıya çevirin.
Not: Rasyonel sayılarda toplama işleminde değişme ve birleşme özelliği vardır.
Çünkü sayıların yeri değişse de sonuç değişmez buna değişme özelliği denir.
Sayıları değişik sırayla toplasak da sonuç değişmez bu da birleşme özelliğine örnektir.

alıntıdır
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:03   Mesaj No:19
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA ( I )


Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin de yazılamayan polinomlara indirgenemeyen polinomlar denir.
Baş katsayısı bir olan indirgenemeyen polinomlar Asal polinomlar denir.
* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.
P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.
Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.
* a) x3 (x2 – 2x) = x5 – 2x4 b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.
ÖNEMLİ ÖZDEŞLİKLER



I) Tam Kare Özdeşliği:


a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b)İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c)Üç Terim Toplamının Karesi:(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.


II) İki Terim Toplamı veya Farkının Küpü :
a)İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimli lerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir
IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :
i) İki küp Toplam veya Farkı : a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)
ii) a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
iii) a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
iv) a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
v) a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)


Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz


1)x2 + y2 = (x + y)2 – 2xy
2)x2 + y2 = (x – y)2 + 2xy
3) (x – y)2 = (x + y)2 – 4xy
4) (x + y)2 = (x – y)2 + 4xy
5) x3 – y3 = (x – y)3 + 3xy (x – y)
6) x3 + y3 = (x + y)3 – 3xy (x + y)
7) x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)


1) İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?
x2 + y2 = (x + y)2 – 2xy 2ab = 289 – 145
145 = (17)2 – 2ab 2ab = 144 ab = 72 C= 72
2) a – b = 6 (a + b)2 = (a – b)2 + 4ab (a + b)2 = 44
a . b = 2 = ( 6 )2 + 4.2 (a + b) =
a + b = ? = 36 + 8 =
3) a – 2b = 3 ise; a2 + 4b2 = ? a2 + 4b2 = (a – 2b)2 +2. a2b
a . b = 2 = ( 3 )2 + 2. 2 .2 = 17
4) a + b = 12 ise; a . b = ? (a + b)2 = (a – b)2 + 4ab 4 ab = 108
a – b = 6 ( 12 )2 = ( 6 )2 + 4ab ab = 27
5) ise; x2 + y2 = (x – y)2 + 2xy
20
6) ise;
Ç = {- 4 , 4}
7) m + n =8 x3 + y3 = (x + y)3 – 3xy(x + y)
m . n = 1m3 + n3 = (m + n)3 – 3mn (m + n)
m3 + n3 = ? = ( 8 )3 – 3 . 1 . 8 = 488
8) a3 – b3 = 50 x3 – y3 = (x – y)3 + 3xy(x – y)
a – b = 2 ise; a3 – b3 = (a – b)3 + 3ab(a – b)
a . b = ? 50 = 8 + 6ab 6ab = 42 ab = 7
9) ise; x3 – y3 = (x – y)3 + 3xy(x – y)
= ( 3 )3 + 3.1.( 3 ) = 36
10) ise; x3 + y3 = (x + y)3 – 3xy(x + y)
198
11) a + b + c = ? a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)
ab + ac + bc = 12 = ( 7 )2 – 2 ( 12 )
a2 + b2 + c2 = ? = 49 – 24 = 25
12) ise;


= 15
13) ise; C = 120
14) ise; C = 63
15) ise; C = 154
16)ise;C = 75
17)ise; C = 999


ÇARPANLARA AYIRMA KURALLARI



1)Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma :Her terimde ortak olarak bulunan çarpan, parantez dışına alınır. Her terimin ortak çarpana bölümü parantez içine yazılır
1) Aşağıdaki ifadeleri Çarpanlarına ayırınız.
a) 3a + 3b =3(a + b) b) 5m – 10mn = 5m (1 – 2)
c) 12x + 9y =3(4x + 3y) d) 3a2b – 2ab2 = ab (3a – 2b)
e) 3ax + 3ay – 3az f) (a – b) x + 3 (a – b)
g) (m – n) – (a + b)(m – n) h) – a – b – x2 (a + b)
ı) x2(p – 3) + ma2 (3 – p) i) 1 – 2x + m (2x – 1)
2)Gruplandırma Yaparak Çarpanlara Ayırma :Bütün terimlerde ortak çarpan yoksa, terimler ikişer, ikişer, üçer, üçer guruplandırılır. Gruplar ayrı, ayrı ortak çarpanlarına ayrılır.
2) a) mx + ny + my + nx b) xy – xb – yb + b2
c) x4 – 4 + 2x3 – 2x d) 2x2 –3x – 6xy + 9y
e) x3 – x + 1 – x2 f) x4 – x + x3 – 1
g) ab(c2 – d2) – cd (a2 – b2) h) ac2 + 3c – bc – 2ac – 6 + 2b
ı) mn(zi + y2) + zy (m2 + n2) i) a2b2 + 1 – (a2 + b2)
3)Tam Kare şeklindeki İfadeleri Çarpanlara Ayırma :Polinom üç terimli ise, ilk ve son terimin kare köklerinin çarpımı nın iki katı ortadaki terimi veriyorsa, bu tam kare şeklinde ifadedir a2 + 2ab + b2 =(a + b)2, a2 – 2ab + b2 = (a – b)2
3) a) x2 + 4xb + 4b2 b) 4a2 + 12ab + 9b2 c) 4a2b2 – 4abc + c2
4) a) a2b + 8ab +16b3 b) 2m3 – 28m2 +98m c) 4x3y – 12x2y2 + 9xy3
4)İki Kare Farkı Şeklindeki İfadeleri Çarpanlara Ayırma :Polinom iki terimli , işaretleri farklı, kare kökleri alınıyorsa; Bu Polinom iki kare farkı biçiminde çarpanlarına ayrılır. a2 – b2 = (a + b) (a – b)
5) a) 25 – 9a2b2 b) x4 – 1 c) (m – n)2 – (m + n)2
6) a) 18x2 – 2y2 b) 2a2b3 – 32b c) 12x3y – 75xy5
7) a) 9a2 – 6a +1 – b2 b) x2 – 12x + 36 – 4y2 c)16m2 – n2 – 6n – 9
d)1 – x2 – 2xy – y2 e) m2 – n2 – 3m + 3n f) a2 – 25b2 – a + 5b
g) a2 – 4m2 – 12mn – 9n2 h) 9a2 –16m4 – 12axy + 4x2y2
5)İki Küp Toplamı - Farkı İfadeleri Çarpanlara Ayırma: a3 + b3 = (a + b) (a2 – ab + b2),a3 – b3 = (a – b) (a2 + ab + b2)
8) a) a3 + 8 b) 8 – m3 c) x3 + 1 d) 27a3 – 64 e) x3a3 + b3
9) a) 81m3 – 3n3 b) 24x3y – 3y c) 2x + 54x4
10) a) (x +y)3 – 8 b) a3 + 8(a - b)3 c) (m – n)3 + 1
6)xn yn biçimindeki polinomları Çarpanlara Ayırma:
11) a) x4 + 1 = (x + 1) (x3 – x2 + x – 1)
b) x4 – 1 =(x2 + 1) (x + 1) (x – 1)
c) x5 + 25 = (x + 2) (x4 – 2x3 + 4x2 – 8x + 16)
d) x5 – 1 = (x – 1) (x4 + x3 + x2 + x + 1)
7)Bir Terim Ekleyip Çıkararak Çarpanlara Ayırma:Verilen İfade uygun bir terim ekleme ve çıkarma yolu ile tam kare ve iki kare farkı şeklinde çarpanlara ayırma işlemine benzetilir


12) 4x4 + 7x2 + 4 ifadesini Çarpanlarına ayırınız.
4x4 + 7x2 + 4 = 4x4 + 7x2 + 4 + x2 – x2 = 4x4 + 8x2 + 4– x2
= (2x2 + 2)2 – x2
2x2 2 = (2x2 + 2 – x) (2x2 + 2 + x)
2.2x2.2 = 8x2 = (2x2 – x + 2) (2x2 + x + 2)


13) x2 – 6x + 5 ifadesini x’li terimin kat sayısının yarısının karesini
ekleyip-çıkararak çarpanlarına ayırınız.
x2 – 6x + 5 + 32 – 32 = (x2 – 6x + 32) – 32 + 5 = (x – 3)2 – 4
= (x – 3 – 2) (x – 3 + 2) = (x – 5) (x – 1)


14) a) m2 + 2m – 24 b) a4 + a2 + 1 c) 16a4 + 4a2b2 + b4
d) a2 – 6ab + 8b2 +2b – 1 (Not: b2 yi bir ekleyip - çıkar )



8) x2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
Çarpımları c, toplamları b olan iki sayı arayacağız.
Çarpımları (+) ise işaretleri aynı, Çarpımları (–) ise işaretleri farklı
Toplamları (+) “ “ (+) olur Toplamları (+) “ büyüğü (+) olur
Toplamları (–) “ “ (–) olur Toplamları (–) “ büyüğü (–) olur


15)a) x2 + 5x + 6 b) x2 – 5x + 6 c) x2 + 7x + 6 d) x2 – 7x + 6
e) x2 + 5x – 6 f) x2 – 5x – 6 g) x2 + x – 6 h) x2 – x – 6
ı) x2 – 7x – 18 i) x4 – x2 – 30 k) m2 – 6m – 27 l) x2 – 3xy – 10y2
m) –x2 – 2x + 3 n) x2 – 13x + 30 o) x2 + 2y2– 3xy



9) ax2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
ax2 + bx + c = (mx + p) (nx + q)
mx p
nx q (mx.q + nx.q = bx oluyorsa)
16) 6x2 + 7x – 3 = (3x – 1) (2x + 3) olur.
3x – 1 (3x . 3 – 1. 2x = 9x – 2x = 7x olduğundan)
2x + 3
17) a) 3x2 – 2x – 8 b) 3x2 – 7x + 2 c) 2m2 + 5mn – 12n2
d) 8a2 – 2ab – b e) 4x2 + 21x + 5 f) 36a2 – 33ab – 20b2
g) 4m2 + 11m – 3 h) 6a2 + 5a – 6 ı) 12a2 – 8ab – 15b2
i) 2m2 – 10m + 12 k) 3x2 + 3x – 18 l) 3 n2 + 30n + 48
18) a2 + 2ab + b2 = 3 ve c2 + 2ac + 2bc = 6 ise; a + b + c = ?
c2 + 2ac + 2bc = 6 T.T.T
a2 + b2 + c2 + 2ab + 2ac + 2bc = 9 (a + b + c)2 = 9 Ç = {-3, 3}
19) 91) x = 4 , y = 2 ise, x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = ?
a) 16 b) 32 c) 64 d) 128 e) 256
x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = (x – y)5 = (4 – 2)5= 32
20) 97) , ise; a) 6 b) 8 c)10
a + b yerine ab yazılırsa
(a . b)2 – 2ab – 24 = 0 olur. a .b = y diyelim.
y2 – 2y – 24 = 0 y – 6) (y + 4) = 0 y = - 4 ve y = 6
21) ise, C = 8
olur. (özdeşlikte yerine yazalım )
22) ise;C = 36
olur. (özdeşlikte yerine yazalım )
23) ise;C = 12
olur. (yerine yazalım )
24) işleminin sonucu kaçtır?
123 =153 – 30 ve 183 =153 + 30 yazılırsa
=153 olur


alıntıdır
Alıntı ile Cevapla
Alt 04 Ağustos 2012, 22:03   Mesaj No:20
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:6
Cinsiyet:erkek
Yaş:31
Mesaj: 5.132
Konular: 933
Beğenildi:267
Beğendi:0
Takdirleri:61
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: KPSS Matematik Konu Özeti

ÇARPANLARA AYIRMA YÖNTEMLERİ

1) Ortak Çarpan Parantezine Alma:
Terimlerin herbirinde ortak olan ifadelerin alınıp ifadeyi çarpan durumuna getirmektir.

örnek: ax + bx + cx = x (a + b +c)

örnek: 3 (a-b) . c - 6 (a-b) . d = 3 (a-b) . (c-2d)

2) Gruplandırarak Çarpanlara Ayırma:
Terimler çarpanlara ayrılırken grup, grup alınarak çarpanlarına ayrılır.

örnek: ax - by + aj/ - bx = a (x +y) -b (x+y)
= (a - b) . (x + y) (gruplandırmada ortak çarpanma getirildiğine dikkat ediniz.)

örnek: a2 + ab + bc + ac = a (a + b) + c (a + b) =(a + c) . (a + b)

örnek: 2ax - 4ay - x + 2y = 2a (x - 2y) - (x - 2y) = (x-2y) .(2a-1)

3) İki Kare Farkı:
İki terimden oluşmalı, terimler arasındaki işaret (-) ve terimlerin karekökleri olmalıdır.

örnek: 81 x2 - 16 = (9x - 4) . (9x + 4)

örnek: 1 - 25a2 = (1 - 5a) . (1 + 5a) 4)İki Küp Toplam ve Farkı:
örnek: a3 + b3 = (a + b). (a2 - ab + b2)
örnek: 1-27x3 = 13 - (3x)3 = (1-3x). (1 + 3x + 9x2)
örnek: 27a3+8 = (3a)3+(2)3 = (3a+2) . (9a2-6a+4)
örnek: 3-24x3=3(1 -8x3) = 3[13-(2x)3] = 3(1 -2x) . (1 +2x + 4x2)
5)Tamkareli İfadeler:
a2 + 2ab + b2 = (a + b)2 = (a + b). (a + b)
örnek: x2+ 2 + \ = (x + i)2= (x +1). (x + 1)
6) Ax2 + Bx + c Şeklindeki Üç Terimli İfadeler:
Birinci ve üçüncü terimlerin çarpanları alt alta yazılarak çapraz çarpıldığından sonra toplanır. Toplamın sonucu orta terimi veriyorsa karşılıklı olarak terimler alınıp çarpım durumunda yazılır.


örnek: x2 - x - 2 = (x - 2) . (x + 1)

alıntı

Alıntı ile Cevapla
Cevapla


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Konuyu değerlendir
Konuyu değerlendir:

Benzer Konular
Konu Başlıkları Konuyu Başlatan

Medineweb Forum Ana Kategori Başlıkları

Cevaplar Son Mesajlar
2010 KPSS Önlisans Çıkmış Soru Çözümleri Matematik Medineweb KPSS-Çıkmış Sorular-Cevaplar 1 14 Ekim 2018 14:50
KPSS Matematik Eğitim Videoları Medineweb Matematik 13 14 Ekim 2018 14:48
DGS Matematik Dersi Konu Özetleri-MEDİNEWEB Medineweb DGS (Dikey Geçiş Sınavı) 47 12 Nisan 2014 13:56
KPSS Coğrafya Dersi Konu Özetleri Medineweb Coğrafya 35 05 Ağustos 2012 22:29
KPSS Tarih Konu Özeti Medineweb Tarih 34 05 Ağustos 2012 22:17

Yeni Sayfa 1

www.medineweb.net Ana Sayfa

Tefekküre Davet Köşesi

Medineweb Sosyal Medya Guruplarımıza Katılın

facebookacebook   twitter Twitter   InstagramInstagram

Medineweb Alemdarhost sunucularında barındırılmaktadır.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283