Tekil Mesaj gösterimi
Alt 03 Ağustos 2012, 23:11   Mesaj No:14

Medineweb

Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:37
Mesaj: 4.833
Konular: 926
Beğenildi:342
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

Rasyonel sayılarla işlemler – Rasyonel Sayılarla Toplama ve Çıkarma İşlemleri


Tam sayılarda toplama ve çıkarma işlemini bilen bir öğrenci için rasyonel sayılarda toplama ve çıkarma işlemi çok basit bir konu olacaktır.

iki rasyonel sayı verildiğinde geçen sene öğrendiğimiz kesirlerde toplama ve çıakrma işleminin kurallarını uygulayacağız.
Örneğin;

4-2=2

5+3=8

derken birden karşımıza negatif tam sayıların da olduğu işlemler çıktı ve

-4-2=-6

-5+3=-2 gibi sonuçları gördük.

Kesirlerde de paydaları eşitledik, payları topladık veya çıkardık, paydalar ise sabit kaldı.
Şimdi bunların ikisini birarada kullanacağız.

yukarıda iki rasyonel sayı ile ilgili işlemler verilmiş.
aradaki işlem toplama işlemi ve paydaların aynı olması gerektiği için eşitledik paydayı.
Payda eşitlendikten sonra payda ile işimiz bitti ve paya bakıyoruz.
Artık tam sayılarda toplama ve çıkarma işleminin özelliğini kullanabiliri.
-3+2 nin sonucunun -1 e eşit olduğunu biliyoruz ve pay kısmına -1 yazıyoruz.
Sonuç -1/6 olarak bulundu.
Aradaki işlem toplama da olsa, çıkarma da olsa aynı mantığı kullanıyoruz.
Soru: Rasyonel sayılar tam sayılı kesir şeklindeyse veya ondalık sayı şeklineyse nasıl sonuca gideriz?
Cevap: Tam sayılı kesirleri bileşik kesre çevirirsek hiçbir zaman hata yapmayız.
Aynı şekilde, sayılardan biri ondalık sayı, diğeri rasyonel sayı ise; ya ikisini de rasyonel sayıya çevirin, ya da ikisini de ondalık sayıya çevirin.
Not: Rasyonel sayılarda toplama işleminde değişme ve birleşme özelliği vardır.
Çünkü sayıların yeri değişse de sonuç değişmez buna değişme özelliği denir.
Sayıları değişik sırayla toplasak da sonuç değişmez bu da birleşme özelliğine örnektir.


alıntı
Alıntı ile Cevapla