Cevap: DGS Matematik Dersi Konu Özetleri
[CENTER]KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi 2 olan c doğal sayısını ele alalım. a2 = 2 ise a sayısını a = şeklinde gösterebilir ve ‘karekök iki ‘diye okuyabiliriz.Acaba bu sayısı hangi sayılar arasındadır?Bunu inceleyelim: 12 =1 1=1 (1,5)2 = 1,5 1,5=2.25 tir O halde sayısı;1< 0) Örnek: ( )4 = 4 = = 5.5 = 25 NOT: ( + ). ( - ) = ( )2 – ( )2 = a – b Örnek: ( + ). ( - ) = ( )2 – ( )2 = 7-3 = 4 3)Bölme Karekök içinde verilen sayılar bölünüp kök içine yazılır.Sadeleştirmeler yapılıp,mümkünse kök dışına çıkarılır. a,b R+ ve b 0 ise / = ve / = dır. Örnekler: - / = - : = = = /2 - / = = PAYDAYI RASYONEL YAPMA Bölüm şeklindeki kareköklü bir ifadede, paydayı karekökten kurtarmaya, paydayı rasyonel yapmak denir.Paydayı kökten kurtarmak için ;pay ve paydayı ,paydanın eşleniği ile çarparız. nın eşleniği ve . =a dır. ( + ) nin eşleniği ( - ) ve ( + ). ( - ) = a – b dir. ( - ) nin eşleniği ( + ) dir. ( - b) nin eşleniği ( + b) dir. - nin eşleniği 2 + + 2 dir. + nin eşleniği 2 - + 2 dir. nin eşleniği dir. m nin eşleniği n-m 1)Paydada varsa: Pay ve paydayı ile çarparız. Örnekler: - 1/ = 1. / . = /2 - 5/ = 5. / . = /10 = / 2 2)Paydada + varsa : Pay ve paydayı - ile çarparız. Örnek: 5 5. (2 - ) = ( ). (2 - ) = 5. (2 - ) 22 – ( )2 = 10 - 4 - 3 =10 - = 5(2 - ) BAZI KURALLAR: 1) n = an/m 2) = x , xm =a 3) . = 4) : = 5) - + = (a – b + c) 6) a > 0, b > 0, c > 0 m,n,k pozitif tam sayıdır. 2 . b = an 7) = 8) = 2. bk.c 9) = 10) = 11)( )n = a 12) ( )m = m 13) a R+ ise = n. b 14) p = = 15) =x ise x= 1+ 2 16) =a+1 17) k = |